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INFLUENCE OF HEAT CONDUCTION OF
THE WALL ON THE TURBULENT PRANDTL
NUMBER IN THE VISCOUS SUBLAYER

P. I. Geshev UDC 532.517.4

Temperature pulsations in the viscous sublayer and inthe heat-conducting wall are analyzed.
The analytical dependence of the criterion Pry on the parameters Pr and A and the coordinate
v+ is determined.

In[1-2] it is shown that inthe viscous sublayer of a turbulent boundary stream the characteristics of the
wall material affect the magnitude of the temperature pulsations, and a dimensionless criterion is obtained for
this effect: A = \f(pcpx)z /(pcpx)j . The influence of the molecular Prandtl number (or the Schmidt number Se
in the case of mass transfer [3]) on the turbulent transfer in the viscous sublayer was investigated theoretically
in [3-5]. The influence of the wall material was partially taken into account in [3-5] by settingup different
boundary conditions: ofthe first kind [8(y =0) = 0] or of the second kind [(86/8y) (y =0) =0]. This corresponds to
A= and A =0. In the present paper the theory of [3-5] is generalized toarbitrary values of A.

We will start from the following equations for the temperature pulsations:

o0 dT 0%0

— L =a 0), (1)
of te dy dy? >0)
o 0%
—~ =b 0), 2
ot oy y<<0) @
=9 (y=0), 3)
a0 do
M = A, —F (== 0). 4)
1By 2 3y (v )

Equation (1) describes the temperature pulsations in the viscous sublayer; (2) is the equation of heat prop-
agation in the solid wall;the conditions (3)-(4) express the continuity of the temperature and of the heatflux at
the boundary. In(l) we neglected the dependence of v and ¢ on the coordinates x and z. The applicability of
suchan approximation can be justified rather rigorously inthe case of large Prandtl numbers (see [3-5]), but
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Fig. 1. Turbulent Prandtl number: a) solid curves) A =0; dashed
curves) A =o;curves 1-5correspond to Pr=2, 5, 10. 20. and «,
respectively; b) the solid curves 1-5 correspond to A =0, 0.5, 2, 5,
and 20, respectively, while the dashed curves correspond to A =«;
c)1l, 4) Pr=8;2)10; 3) 5.4; 51000, A =22,

Eq. (1) ean still be used at Pr=1 by treating it as 2 model equationreflecting the main features of the tur-
bulent heat transfer.

To describe the longitudinal velocity pulsations one canuse an analogous (model) equation with the usual
boundary condition of "attachment" to the wall (see [3]):

ou dU P
‘ = G 5
ot dy Y dy? >0 )

u=0 (y=0). (6)

Let us briefly describe the way of solving problem (1)-(4). We write the general solution of Eq, (1)
in the form

0(p, )= — | ar (ay °" t)d e [—(_y:-‘/_'iﬂ_fl : {_ —yP |\ @
. S 0”(.y Vi —1) L ) {Xp da(t—1) | exp 4a(t—l”)JI

where tis the current time; t' isthe time at past moments, since here and later all the random processes are
assumed to be statistically steady in time; the lower limitof integration over t' (the start) is taken ag —,

—c

The solution (7) is constructed from the fundamental solution of the heat-conduction equation and hence
it satisfies Eq. (1). The first exponential inthe braces gives the particular solution of the inhomoge-
neous equation (1) while the secondassures, asis shownbelow, that theboundary conditions (3)-(4) are satis-
fied. In the case of boundary conditions of a general form (explicitly depending on time, for example) the quan-
tity A could depend on the integration variables y'and t', but for the conditions (3)-(4) it is quite sufficient to
take A =const.

Taking A =const and y =0, from (7) we obtain the temperature pulsations at the boundary:

| O, et [ e
eo(t):—(l—A)_idt bs‘d VT dy _exp[ m]. 8)

The general solution of Eq. (2) with the condition (3) has the form [6]
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1918, ) B _
¢y, t) = S mexp[ ETYTIY } (y<<®) 9)

We gubstitute (8) into (9) and change the order of integration over t" and t'. After this the integral overt" can
be calculated using the theorem on the convolutionfrom the theory of Laplace transforms. Asa result,

W) g [w(lylVE+y’]/5‘)z}.

-]74————4 p dab(t — 1)

Substituting Eqs. (7) and (10) into the boundary condition (4) gives the equation
A=(1—A)1+A).

Thus, the solution of problem (1)-(4) is fully determined.

oy t)=—( *A)S dt’ s‘d ’ (10)

Let us multiply (7) by v(y, t)and average it (over time or over a statistical ensemble). As a result, for
the turbulent heat flux we have the expression

(o) = [ar {00y D ownow, =) G = —a an
i 0
where the angle brackets denote averaging; G(y, y'; 7) is Green's function of problem (1)-(4) for y>0; 7 =t — t'.
Expression (11) shows that a; is notsimply a function but an integral operator acting on the average temperature
gradient. But we will nottake this property of the coefficient g intoaccount in future, assuming in the first
approximation that dT /dy, as a slowly varying function of the coordinates, can be taken outside the integral.

Thus, fromEq. (11) we get a definite expression connecting a;and the correlation function of the trans-
verse velocity pulsation. An analogous expression canalso be obtained for the turbulent viscosity v¢. Insolving
this problem one can use the same Green function as in Eq. (7), replacing aby v and sefting A = —1 in it,
since the boundary condition (6) is valid for u.

One must determine the form of the velocity correlation function. For it we suggest the expression

(v(g. oty t—1) ) = RyPy exp(—/8), (12)
where R and A are some constants. Equation(12) allows for the time damping of the velocity correlation and
agrees with the knownbehavior of the amplitude of pulsations in the viscous sublayer. Such anapproximation
allows one to integrate the expressions for a; and vy in elementary functions. As a result, forthe ratio vi/at,
i.e., for the turbulent Prandtl number, we obtain the expression

2
1+ 2 _exp(— g, V)
Pr, — Pr 24 : (13)

. Pry2 A e
1+ 27+ —
©2A 14 Aexp( y+VPr/A )

The behavior of the quantity Pri for A =0 and « and different Pris shownin Fig. 1a. The quantity A in
Eq. (13) is dimensioniess; we took A=20. This value follows from the experiments of [7].

We note an interesting fact, first pointedout by Kutateladze [8]and then confirmed in [3-5], towit:
Prt~y11 as Pr—oo. (14)

This means that the behavior of the coefficient ay in the viscous sublayer with Pr>»1 differs considerably from
the behavior of ¥: vy~ const vy’ , but at~ const vy‘i_ (in accordance with the well-known Landau — Levich equa-
tion [9-10]). Equation (14)corresponds tocurve5 in Fig. 1,

The separation of the curves asa function of the parameter A isshown inFig. 1b, for two values of Pr.
As follows from (13), at Pr > 1 the influence of this parameter on Pr; is limited to a narrow region of y+ Z/A/Pr.

In the "logarithmic" region (y+>1) the turbulent Prandtl number ceases to dependon y; and, according
to most of the experimental data, arrives at a value close to 0.87 [11]. Equation (13) can be corrected
with the experimental asymptotic behavior by introducing a factor of 0.87 into it,

In Fig. 1c, thevertical segments show the scatter of the experimentaldata from [12] (Pr =8); curve 1is
plotted from the corrected Eq. (13); curves 2 and 3 are takenfrom [2] (theory); 4 and 5 are obtained theoretically
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in [13], where the calculations are based onthe equations for the second moments and oncertain closure hypo-
theses; the influence of the heat conduction of the wall was not taken into account in [13].

A comparison of the present work with [2, 13] leads to the conclusion that the main results of these
theories agree well. The quantitative disagreements inthe values of Priareevidently connected witha differ-
ence in the initial equations. The data of more detailed experiments inthe region of y, 21 are needed for further
development and refinement of the theory.

NOTATION

Pr, Prt, molecularand turbulent Prandtl numbers; v, kinematic viscosity; a, coefficient of thermal
diffusivity of the liquid; b, coefficient of thermal diffusivity of the wall; p,, ¢, . Ay, density. specificheatcapacity,
and thermal conductivity of the liquid; py, Cp,, Ay, the same for the wall; A =\/-(pc_7\—);7(p_c¥;?\—) , parameter char-
acterizing the influence of the wall; 6(y, t), temperature pulsations in the liquid; ¢(y, t), temperature pulsations
inthe wall; T(y), averagetemperature of the liquid; u, v, pulsation components of velocity transverse and per-
pendicular tothe wall; Uly), average velocity; v«, dynamic veloeity; t, time; y, distance tothe wall;y =vsy/v,
dimensionless coordinate; A, constant characterizing the damping rate of the velocity correlations; vy, gy, tur-
bulent viscosity and turbulent thermal diffusivity; the index 1 refers to the liquid and 2 refers tothe wall.
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