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INFLUENCE OF HEAT CONDUCTION OF 

THE WALL ON THE TURBULENT PRANDTL 

NUMBER IN THE VISCOUS SUBLAYER 

P.  I. G e s h e v  UDC 532.517.4  

T e m p e r a t u r e  pulsations in the viscous sublayer  and in the heat-conduct ing wall  a re  analyzed.  
The analyt ical  dependence of the c r i t e r ion  P r  t on the p a r a m e t e r s  P r  and A and the coordinate 
y+ is de te rmined .  

In [1-2] it is shown that inthe viscous sublayer  of a turbulent  boundary s t r e a m  the cha rac t e r i s t i c s  of the 
wall m a t e r i a l  affect  the magnitude of the t e m p e r a t u r e  pulsat ions,  and a d imens ionless  c r i t e r ion  is obtained for  
this effect: A = ~f(pcph)2/(pCph) 1 . The influence of the molecu la r  Prandt l  number  (or the Schmidt numberSc  
in the case  of m a s s  t r ans f e r  [3])on the turbulent  t r an s f e r  in the viscous sublayer  was invest igated theore t ica l ly  
in [3-5]. The influence of the wall m a t e r i a l  was par t ia l ly  taken into account in [3-5] by se t t ingup different  
boundary conditions: of the f i r s t  kind [0 (y =0) = 0] or  of the second kind [(a0/~])(y = 0)= 0]. This co r responds  to 
A =~ and A =0. In t h e p r e s e n t  pape r  the theory  of [3-5] is genera l ized  to a r b i t r a r y  values of A. 

We will s t a r t  f rom the following equations for  the t e m p e r a t u r e  pulsat ions:  

O0 dT 020 
- - + v - - = a - -  (y>o), (1) 
Ot dy Oy 2 

O~--~-=b 02~ (y<O), (2) 
Ot Oy 2 

o = ~  (y=o), (3) 

' ay ~ ( y  = 0) (4) 

Equation (1) desc r ibes  the t empe ra tu r e  pulsat ions in the viscous sublayer ;  (2) is the equation o f h e a t p r o p -  
agation in the solid wall; the conditions (3)-(4) exp re s s  the continuity of the t e m p e r a t u r e  andof  the heatf tux a t  
the boundary.  In (1) we neglected the dependence of v and 0 on the coordinates  x and z. The applicabil i ty of 
such an approximat ion can be justif ied r a t he r  r igorous ly  in the case  of la rge  Prandt l  numbers  (see [3-5]), but 

T rans l a t ed  f rom Inzhenerno-Fiz iehesk i i  Zhurnal ,  Vol. 35, No. 2, pp. 292-296, August,  1978. Original  
a r t i c le  submit ted Ju ly  25, 1977. 
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Fig.  1. TurbulentPrandt l  number:  a) sol idcurves)  h =0; dashed 
curves) h =~; curves 1-5 correspond to P r  =2, 5, 10. 20. and r162 
respect ively;  b)the solid curves 1-5 correspond to h =0, 0.5,  2, 5, 
and 20, respect ively,  while the dashed curves correspond to h =,r 
c) 1, 4) P r = 8 ;  2) 10; 3) 5.4;  5)1000. h = 2 2 .  

Eq. (1)can still be used at P r ~  1 by treating it as a model equation reflecting the main features of the tu r -  
bulent heat t ransfer .  

To descr ibe the longitudinal velocity pulsations one can use an analogous (model) equation with the usual 
boundary condition of "attachment" to the wall (see [3]): 

Ou dU 02u 
- -  - -  ~3  - - = = V - -  

Ot dy 092 

u = 0  (u = 0). 

(u > 0), (5) 

(6) 

Let us briefly describe the wayof  solving problem (1)-(4). We write the general  solution of Eq. (1) 
in the form 

t dT 
0(y, t )=  - -  dr' idy' _| ~ ( / - -~aa~-~) - '  4a( t - - t ' )_  - -Aexp 4a( t - - t ' )  

where t is the cur rent  time; t '  is the time at past  moments ,  since here and later  all the random processes  are  
assumed to be stat is t ical ly steady in time; the lower l imi tof  integration over  t '  (the start) is taken as - -~ .  

The solution (7) is constructed f rom the fundamental solution of the heat-conduction equation and hence 
it satisfies Eq. (1). The f i r s t  exponential tnthe braces  gives the par t icu lar  solution of the inhomoge- 
neous equation (1) while the seeondassu res ,  as is shownbelow, that the boundary condi t ions(3)- (4)are  sa t is-  
fied. In the ease of boundary conditions of a general  form (explicitly depending on time, for example)the quan- 
tity A could depend on the integration variables y '  and t ' ,  but for the conditions (3)-(4) it is quite sufficient to 
take A = const.  

Taking A =const  and y =0, f rom (7) we obtain the temperature  pulsations at the boundary: 
t 

- .  ~ ~ _ ~ )  exp 4a(t-- t ' )  " (8) 

The general  solution of Eq. (2) with the condition (3) has the form [6] 
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, ,Oo,l_oxp[ , J 
K 4 - ~ ( t  - 0 3 40 (t - t") (v < 0). (9) 

We substitute (8) into (9) and change the order  of integration over t" and t ' .  After this the integral over t" can 
be calculated using the theorem on the convolution from the theory of Laplace t r ans fo rms .  As a result ,  

t .0  , , dT 
(" . v (y , l ) ~-f- [ (,y,V-a @ y ' V ~ ) 2  ] 

q ~ ( y , t ) = - - ( l + A )  3 dr' ~d 9 . Y,-~exp L-- 4a-~(t ~-~) J" (10) 
_ ~' V 4 ~ a  (t - -  t ) 

Substituting Eqs.  (7) and (10) into the boundary condition (4) gives the equation 

A = (1 - -  A)/(1 -? A). 

Thus, the solution of problem (1)-(4) is fully determined.  

Let us multiply (7) by v(y, t)and average it (over time or over a stat is t ical  ensemble).  As a result ,  for 
the turbulent heat fluxwe have the expression 

| | dT dT 
< v O > = : _ _ f d ' c S d y ' G ( y , y '  " c ) < v ( y , t ) v ( y ' , t - - , ) )  dy' a t ~ y  ' (11) 

0 0 

where the angle brackets  denote averaging; G(y, y ' ;  7) is Green's  function of problem (1)-(4) for y> 0; ~" =t -- t ' .  
Express ion (1I) shows that at is nots imply  a function but an integral operator  acting on the average temperature  
gradient.  But we will not take this proper ty  of the coefficient a t into account in future, assuming in the f i rs t  
approximation that dT/dy, as a slowly varying funetion of the coordinates,  can be taken outside the integral.  

Thus, from Eq. (11) we get a definite expression connecting at and the corre la t ion  function of the t r ans -  
verse  velocity pulsation. An analogous expression canalso  be obtained for  the turbulcntviscosi ty  v t. Insolving 
this problem one can use the same Green function as in Eq. (7), replacing a b y  v and setting A = --1 in it, 
since the boundary condition (6) is valid for u. 

One must  determine the form of the velocity correla t ion function. For  it we suggest  the expression 

( v(y. t )v(y ' ,  t - - .c)  ) = I~y:y'2exp(--~c/A). (12) 

where R and A are some constants.  Equation(12) allows for thet ime damping of the velocity corre la t ion and 
agrees  with the knownbehavior of the amplitude of pulsations in the viscous sublayer .  Such anapproximat ion 
allows one to integrate the expressions for a t and v t in e lementary functions. As a result ,  for the rat io v t / a  t ,  
i . e . ,  for the turbulent Prandtl  number,  we obtain the expression 

i +  ~ -  -- exp (-- y§ 
Pr t = Pr (13) 

1 ~ Pry~_ A 
2A 1 + A exp (- y+V-P~-A ) 

The behavior of the quantity Pr  t for A =0 and ~o and different P r  is shown in Fig.  l a .  The quantity A in 
Eq. (13) is dimensionless;  we tookA=20.  This value follows f romthe  experiments of [7]. 

We note an interesting fact, f i r s t  pointed out by Kutateladze [8] and then confirmed in [3-5], to wit: 

pr t ' ~  y%1 as Pr--~oo. (14) 

This means that the behavior of the coefficient a t in the viscous sublayer with Pr  >>1 differs considerably from 
the behavior of ~t: vt ~ coast  vy3+, but at ~ const  vy4+ (in accordance with the well-known L a n d a u -  Levich equa- 
tion [9-10]). Equation (14)corresponds to curve 5 in Fig.  1. 

The separat ion of the curves as a function of the parameter  A is shown inFig,  lb ,  for two values of P r .  
As follows from (13), at P r  >> 1 the influence of this parameter  on P r  t is l imited to a narrow region of y+ ~4-~-/-~-. 

the "logari thmic" region (y+>>l) the turbulent Prandtl  number ceases  to dependon y+ and, according 
to most  of the experimental  data, a r r ives  at a value close to 0.87 [11]. Equation (13) can be cor rec ted  
withthe experimental  asymptotic behavior by introducing a factor  of 0.87 into it. 

5~ Fig.  l c ,  the ver t ical  segments show the sca t te r  of the experlmentaldata  f rom [12] (Pr =8); curve 1 is 
plotted from the cor rec ted  Eq. (13); curves 2 and 3 are  takenfrom [2] (theory); 4 and 5 are  obtainedtheoret ieal ly 
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in [13], where  the calculat ions a re  based  on the equations for  the second moments  and on cer ta in  c losure  hypo- 
theses ;  the influence of the heat  conduction of the wall  was not taken into account  in [13]. 

A compar i son  of the p r e s en t  work with [2, 13] leads to the conclusion that the main  resu l t s  of these 
theor ies  ag ree  well .  The quanti tat ive d i sag reemen t s  in the values of P r  t a re  evidently connected with a d i f fer -  
ence in the initial equat ions.  The data of m o r e  detai led exper iments  in the region of y+ f 1 a re  needed for  fur ther  
development  and re f inement  of the theory .  

NOTATION 

Pr ,  P r t ,  m o l e c u l a r a n d  turbulent  Prandt l  numbers ;  v, k inemat ic  v iscos i ty ;  a,  coefficient  of t he rma l  
d i f fus ivi tyof  the liquid; b, coeff icient  of t he rma l  di f fus ivi tyof  thewall ;  Pl, Cpl, ~ ,  density,  spec i f i chea tcapac i ty ,  
and the rma l  conductivity of the liquid; P2, Cp2, ~ ,  the s ame  for  the wail; A =q(pcoM2/(pCpM l, p a r a m e t e r  cha r -  
ac te r iz ing  the influence of the wall; O(y, t), t empe ra tu r e  pulsations in the liquid; @(y, t), t empe ra tu r e  pulsations 
in the wall; T(y), ave rage  t e m p e r a t u r e  of the liquid; u, v, pulsation components  of velocity t r a n s v e r s e  and p e r -  
pendicular  to the  wail; U(y), ave rage  velocity;  v . ,  dynamic velocity;  t, t ime; y, dis tance tothe  wal l ;y+ =v.y/v, 
dimensionless  coordinate;  A, constant  cha rac te r i z ing  the damping ra te  of the veloci ty cor re la t ions ;  v t, a t, tu r -  
bulent v i scos i ty  and turbulent  t he rma l  diffusivity; the index i r e f e r s  to the liquid and 2 r e f e r s  to the wall.  
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